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32 Abstract  

 Consumption o f  toxic  butter  clams  (Saxidomus  gigantea)  is  the  most  frequent  cause  of  

paralytic  shellfish p oisoning  (PSP)  in A laskan c oastal  communities.  This  study  examines  

seasonal  variation i n t otal  paralytic  shellfish t oxin  concentrations  and c ongener  distribution in   

tissues  of  butter  clams  collected i n th ree  communities  in t he  Kodiak I slands,  Alaska:  the  City  of  

Kodiak,  Ouzinkie  and  Old H arbor.  In r esponse  to  questions  from  local  harvesters,  the  efficacy  of  

removing  particular  clam t issues  on t otal  toxin le vels  was  also a ssessed.  Butter  clam s amples  

were  collected  ~monthly  during  2015-2020 i n  each c ommunity  to m onitor  shellfish t oxin l evels.  

Results  were  combined w ith c lam m onitoring  data  collected p reviously  (2013-2015)  to d ocument  

the  seasonal  distribution o f  saxitoxin ( STX)  and i ts  congeners  (neosaxitoxin,  gonyautoxin)  in  

clam  tissues.  Seasonally,  paralytic  shellfish t oxin l evels  in b utter  clams  were  highest  in s ummer,  

declined i n w inter,  but  often r emained  above  regulatory  limits  throughout  the  year  in th e  three  

Kodiak c ommunities.  Butter  clams  collected  from O uzinkie  (2013-2020)  averaged 1 65±87 µ g  

STX  equivalents  (Eq.)  100  g-1 ,  compared t o  Kodiak  73±54 µ g  STX  Eq.  100  g-1  and O ld H arbor  

143±103 µ g  STX  Eq.  100  g-1 .  STX  accounted f or  59-71%  of  the  total  toxin  concentration i n  

clams  at  Ouzinkie,  Kodiak,  and  Old H arbor,  while  neosaxitoxin ( neoSTX)  accounted  for  12-

18%.  Gonyautoxins  (GTXs)  represented 3 1-60%  of  the  total  toxin c oncentration d uring  the  

seasonal  Alexandrium  catenella  bloom  in J une-July,  with l ower  percentages  in o ther  months.  The  

fraction o f  total  toxin v aried a mong c lam ti ssues:  the  siphon t ip ( 2-29%),  the  neck  (3-56%),  the  

gut  (3-65%)  and th e  body  (6-85%).  Removal  of  the  siphon tip r  educed t otal  toxin c ontent  

substantially  in s ome  samples  but  had li ttle  effect  in o thers.  Saxitoxin c ongeners  varied  greatly  

and s omewhat  unpredictably  among  clam  tissues,  and  the  results  indicate  removal  of  specific  

tissues  was  not  an e ffective  strategy  for  reducing  paralytic  shellfish t oxin le vels  in b utter  clams  

for  safe  consumption.   
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56 1.  Introduction  

 

 In  North A merica,  paralytic  shellfish p oisoning  (PSP)  occurs  most  commonly  through  

consumption o f  bivalves  that  have  ingested  microalgae  in th e  genus  Alexandrium.  Many  

Alexandrium  species  produce  potent  neurotoxins  (saxitoxins,  STXs)  which c an a ccumulate  to  

high c oncentrations  in s hellfish ( Wiese  et  al.,  2010).  STXs  act  by  blocking v oltage-gated  

sodium c hannels  and in hibiting  mammalian n erve  cell  depolarization,  resulting  in a dverse  

gastrointestinal,  neurological  and c ardiovascular  symptoms  (Noda  et  al.,  1990;  Cusick  and  

Sayler,  2013).  The  potencies  of  the  individual  saxitoxin c ongeners  vary  by  more  than  100-fold,  

the  most  toxic  being  STX,  neosaxitoxin ( neoSTX)  and  some  of  the  gonyautoxins  (GTXs)  

(Etheridge,  2010;  FAO/WHO,  2016).  After  ingestion o f  Alexandrium  cells,  shellfish c an  

metabolically  convert  less  toxic  congeners  found i n t he  microalgae  into  more  toxic  compounds  

(Botelho e t  al.,  2012;  Suarez-Isla,  2015).  Most  notably,  GTXs  and th e  less  potent  N-

sulfocarbamoyl  toxins  C1-C4 o ften p redominate  in  Alexandrium  cells  and  may  be  converted t o  

the  more  toxic  congeners  STX  and n eoSTX  in s hellfish t issue  (Etheridge,  2010;  Laabir  et  al.,  

2013).  Such  congener  conversion h as  been d ocumented in s  hellfish b efore,  where  STX,  

neoSTX  and th e  GTXs  represented u p to 1  5%,  58%,  and 3 8%  of  the  total  toxin lo ad ( Reis  

Costa  et  al.,  2009;  Trainer  et  al.,  2014).  However,  specific  congeners  can b e  ephemeral,  

changing  seasonally  in r esponse  to l ocalized  Alexandrium  bloom  progression a nd  metabolic  

processes  within th e  shellfish ( Beitler,  1988).  

 Paralytic  shellfish t oxins  (PSTs)  may  also b e  distributed u nequally  among  shellfish  

tissues  following  assimilation.  For  example,  Cembella  et  al.  (1993)  found t oxin c oncentrations  

in t he  organs  of  Atlantic  surf  clams  (Spisula)  and  sea  scallops  (Placopecten)  varied  greatly  

among  the  adductor  muscle,  gill,  mantle,  siphon a nd f oot.  Research w ith P acific  butter  clams  
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80 (Saxidomus  gigantea  Deshayes,  1839)  indicated a   similar  level  of  inter-tissue  variability,  with  

the  highest  toxin l evels  often a ssociated  with th e  siphon ( Beitler,  1988).  As  a  result,  removal  of  

all  or  part  of  the  siphon h as  been a dopted p reviously  by  commercial  and n oncommercial  

harvesters  to r educe  clam to xicity  (Waskiewiez  et  al.,  1955);  and r egulatory  agencies  have  

recommended  recreational  butter  clam  harvesters  remove  the  siphon t ip to r  educe  PSP  risk  

(Nishitani  et  al.  2004;  BCCDC,  2021).  

 In th e  U.S.,  the  danger  to h uman h ealth f rom  PSTs  is  most  severe  in A laska  due  to  

recurrent  toxic  Alexandrium  blooms,  the  relative  remoteness  of  many  coastal  communities,  and  

historical  reliance  on s hellfish r esources  for  subsistence  and  cultural  practices  (RaLonde,  

2001).  PSP  is  a  continuing  threat  to s hellfish h arvesters  in A laska,  and  more  than 1 00 c ases  of  

PSP  have  been  recorded  by  the  State  since  the  early  1990s,  with r ecent  fatalities  recorded in   

1994 ( Kodiak),  1997 ( Kodiak),  2010 ( SE  Alaska),  and  most  recently  in J uly  2020 ( Unalaska)  

(Gessner  et  al.,  1997;  Trainer  et  al.,  2014;  ADHSS,  2020).  To p revent  outbreaks  of  PSP  in th e  

U.S.,  State  public  health a gencies  (through th e  U.S.  Food  and D rug  Administration [ FDA]  and  

Interstate  Shellfish S anitation C onference)  have  adopted a   safe,  regulatory  limit  of  80 µ g  STX  

Eq.  100  g-1  of  shellfish ti ssue  (FDA,  2019;  https://dec.alaska.gov/eh/fss/shellfish/).  Historical  

data  indicate  toxin l evels  in s hellfish a long  the  Gulf  of  Alaska  and t he  Aleutians  commonly  

exceed 1 ,000 µ g  STX  Eq.  100  g-1 ,  with e xtreme  toxin l evels  over  10,000 µ g  STX  Eq.  100  g-1  

observed p eriodically  (Castrodale,  2015).  Mitigation o f  Alaskan  PSP  risk g enerally  hinges  

upon d irect  surveillance  of  PST  concentrations  in  shellfish r ather  than  Alexandrium  cell  

abundance.  Past  studies  have  shown s hellfish t oxin  levels  provide  a  reasonable  measure  of  

Alexandrium  cell  abundance  and b loom  severity  (Matweyou,  2003;  Vandersea  et  al.,  2018)  

relative  to th e  greater  time  and  manpower  costs  and d ifficulties  associated  with r eliable  
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103 identification a nd c ounting  of  Alexandrium  cells  in p lankton s amples  via  microscopy  

(Anderson  et  al.,  2005;  Godhe  et  al.,  2007;  Litaker  et  al.,  2018).  Alexandrium  cell-based  

monitoring  is  also li mited b y  the  capacity  for  molecular  methods  within t he  State.  Because  of  

limited S tate  toxin t esting  capacity  and t he  enormous  Alaskan c oastline,  only  commercially  

harvested s hellfish a re  routinely  tested f or  PSTs  by  the  Alaska  Dept.  Environmental  

Conservation.  The  management  strategy  for  non-commercial  harvesting  has  been t o a lert  

residents  that  all  shellfish a re  potentially  unsafe  and t heir  consumption s hould b e  avoided  

(ADPH,  2018;  ADHSS,  2020).  

 Subsistence  harvesting  of  shellfish r esources  is  common i n c oastal  Alaska  despite  PSP  

risks.  In th e  Kodiak  Archipelago ( Fig.  1A)  for  instance,  harvested s hellfish a re  often d ominated  

by  butter  clams  due  to b oth t heir  large  size  and t heir  wide  distribution a nd  abundance.  Survey  

data  from  the  Kodiak  communities  of  Ouzinkie,  the  City  of  Kodiak,  and O ld H arbor  (Figs.  1B-

D)  indicated N ative  residents  exhibit  higher  shellfish c onsumption r ates  than e lsewhere  in t he  

state  (Wolfe,  2004;  Lance  et  al.,  2019).  Clam  harvesting  is  also a n i mportant  part  of  the  cultural  

identity  of  Kodiak  Native  communities,  where  group h arvesting  and c onsumption o f  butter  

clams  have  long  been i mportant  social  activities.  Harvested i tems  are  commonly  shared a mong  

family  members,  friends  and o ther  households  statewide,  and  may  even b e  shipped t o o ther  

North A merican c ommunities  (Mishler,  2001;  Reedy-Maschner  and  Maschner,  2012).  In  

combination w ith s hellfish t oxin c oncentrations  frequently  greater  than th e  regulatory  limit  

(Ralonde,  1996;  Matweyou a nd B artz,  2015),  these  social  factors  result  in  very  high  PSP  risks  

to K odiak  shellfish c onsumers.  

 Here  are  described t he  results  of  a  5-year,  community-based s hellfish m onitoring  project  

in t he  Kodiak A rchipelago.  In p art,  this  work  represents  an e xtension o f  a  2013-2015 p ilot  
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126 project  by  the  State  of  Alaska  (Matweyou a nd B artz,  2015).  Specifically,  we  report  PST  data  

from  butter  clams  collected in O  uzinkie,  the  City  of  Kodiak  and O ld H arbor  during  2013-2020  

(Fig.  1).  Seasonal  trends  in to xin l evels  and t he  contribution o f  major  PST  congeners  to t he  clam  

toxin p ool  are  examined.  Although b utter  clams  are  not  ideal  for  shellfish t oxicity  monitoring,  in  

that  individuals  often r etain P STs  for  months  after  an  Alexandrium  bloom  (Chambers  and  

Magnusson,  1950),  this  species  is  target  by  subsistence  harvesters  in t he  Kodiak I slands,  and w as  

identified a s  the  preferred s pecies  by  participating  communities.  Although i t  was  not  possible  to  

monitor  phytoplankton c ell  abundances  during  this  study,  plankton s urveys  conducted b y  the  

authors  before  and  after  the  study  period in dicated  blooms  of  A.  catenella  were  responsible  for  

the  observed to xin l evels  in b utter  clams.  An i nvestigation in to t oxin d istribution i n b utter  clam  

tissues  was  added i n r esponse  to i nquiries  by  Kodiak  shellfish h arvesters  regarding  the  effect  of  

local  preparation  methods  on t oxin  levels  in c lam  meats.  The  distribution o f  PSTs  among  the  

clam  siphon t ip,  neck,  gut  and b ody  was  determined a nd t he  effect  of  removing  the  siphon ti p o n  

potential  toxin e xposure  was  evaluated.  

 

2.  Methods  

2.1 S tudy  sites  

 The  Kodiak  Archipelago  includes  16 m ajor  islands  located 4 0-50  km o ff  the  southeast  

coast  of  the  Alaska  Peninsula.  The  sampling  sites  were  located o n tr aditional  clam h arvesting  

beaches  in th e  communities  of  Ouzinkie,  Kodiak,  and O ld H arbor  (Fig.  1A).  Ouzinkie  is  an  

Alutiiq c ommunity  located o n S pruce  Island;  here,  butter  clams  were  collected f rom  Sourdough  

Flats  (Fig.  1B).  The  City  of  Kodiak  (hereafter  Kodiak)  is  the  largest  population c enter  in t he  

archipelago  and i s  located o n C hiniak  Bay  at  the  east  end o f  Kodiak I sland.  Here,  butter  clams  

were  collected  from M ission B each ( MB)  and t he  east  side  of  Near  Island ( NI;  Fig.  1C).  Old  
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170

Harbor  is  an  Alutiiq c ommunity  on th e  southeast  coast  of  Kodiak I sland.  Butter  clams  from  this  

location w ere  collected  at  Shipwreck  Beach  (Fig.  2D).  

 

2.2 S ample  collection  

 Butter  clam  samples  were  collected  approximately  monthly  in O uzinkie  and O ld H arbor  

during  2013 -  2020,  and i n t he  City  of  Kodiak  during  (2016  - 2020).  For  butter  clam  monitoring,  

at  least  12 c lams  were  collected w ithin a   two-meter  radius  (if  possible);  small  specimens  (<4 c m  

length)  were  avoided b ecause  they  were  considered t oo s mall  for  subsistence  harvesting.  Clams  

were  scrubbed,  rinsed w ith ta p w ater  to r emove  sediment  and d ebris,  and w ere  then s hucked a nd  

drained ( ASEHL,  2020).  The  meats  were  pooled  and f rozen  at  -20 ° C  pending  shipment  to th e  

National  Oceanic  and  Atmospheric  Administration ( NOAA)  Laboratory  in  Beaufort,  North  

Carolina  for  analysis.  

 To e xamine  the  distribution a nd s easonality  of  PSTs  in c lam  tissues,  3-6  groups  of  butter  

clams  (at  least  12 c lams  per  group)  were  collected f rom M ission B each a nd S hipwreck  Beach  

during  2015-2018  (Table  1).  Clams  were  shucked  as  above.  Meats  were  then d issected a nd  

pooled in to s amples  of  the  black  siphon t ip ( tip),  the  remainder  of  the  siphon ( neck),  the  gut  

contents  (gut),  and t he  remaining  tissue  (body),  reflecting  the  tissue  types  typically  discarded o r  

retained p rior  to  consumption ( see  Fig.  4).  The  tissue  types  from e ach c lam w ere  then p ooled,  

weighed a nd f rozen a t  -20 ° C  pending  toxin a nalysis.  

 

2.3 T oxin a nalysis  

 Shellfish s amples  were  analyzed v ia  high p erformance  liquid c hromatography  (HPLC)  

with p re  column o xidation u sing  the  standard m ethods  of  Lawrence  et  al.  (2005)  and r efined b y  

Ben-Gigirey  (2012)  and  Harwood  et  al.  (2013).  Briefly,  samples  were  processed u sing  a  

Kinematica  Polytron  model  PT-MR  2500E  homogenizer  fitted w ith a   12  mm  dispersing  head  
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(Kinematica,  Inc.,  New  York,  USA).  A  five  g  subsample  of  homogenized  tissue  was  extracted  

with 3 m  L  of  1%  acetic  acid i n a   100 ° C  water  bath f or  5 m in.  After  cooling  at  4 ° C,  the  sample  

was  centrifuged a t  4,500  rpm  for  10  min,  and th e  supernatant  was  collected.  The  remaining  pellet  

was  re-extracted a nd t he  supernatants  combined.  One  mL  of  the  combined  extract  was  passed  

through a   conditioned S PE  C18 c artridge  (Milford,  Massachusetts,  USA),  pH-adjusted t o 6 .5,  

and d iluted t o 4 m  L  for  oxidation w ith p eriodate  and p eroxide.  PSTs  were  quantified u sing  

Agilent  1100 ( Santa  Clara,  California,  USA)  or  Waters  Aquity  Arc  HPLC  systems  equipped  with  

fluorescence  detection a nd 5 µ  m C 18 c olumns  (150×4.6 m m,  Phenomenex,  Inc.,  Torrance,  

California,  USA).  Concentrations  of  STX,  neoSTX,  decarbamoyl  saxitoxin ( dcSTX),  

gonyautoxins  2 a nd 3 (  GTX2,  GTX3),  decarbamoyl  gonyautoxins  2 a nd 3 (  dcGTX2,  dcGTX3),  

gonyautoxins  1 a nd 4 (  GTX1,  GTX4),  gonyautoxin 5 (  GTX5),  and th e  di-sulfated t oxins  C1 a nd  

C2 w ere  quantified u sing s tandards  purchased f rom  the  National  Research  Council  Canada  

(Halifax,  Nova  Scotia,  Canada).  Isomers  GTX  1 a nd 4 ,  GTX  2 a nd 3 ,  and  C1 a nd C 2 t oxins  

could n ot  be  resolved w ith p re-column o xidation ( Lawrence  et  al.,  2005)  and a re  reported  as  

pairs  (GTX1/4,  GTX2/3,  C1/C2).  In  keeping  with t he  Alaska  Department  of  Environmental  

Conservation’s  protocols,  toxicity  equivalency  factors  (TEFs)  from th e  European  Food  Safety  

Authority  2009 ( ESFA,  2009)  were  used to c  onvert  congener  concentrations  to S TX  Eq.,  with  

the  higher  TEF  used f or  unresolved c ongener  pairs.  Throughout  this  study  toxin c oncentrations  

in c lams  and t issue  components  are  reported in t  otal  STX  Eq.  The  contribution o f  individual  

congeners  to th e  clam  toxin p ool  was  calculated b y  weight  based o n  STX  Eq.  The  fraction o f  

clam  toxin c oncentrations  associated w ith s pecific  tissues  (%  toxin)  was  calculated a s  the  STX  

Eq.  in e ach t issue  relative  total  toxin p ool  in t hat  tissue  component.  
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 Quality  assurance  of  toxin d ata  was  completed b y  instrument  validation u sing  

homogenates  of  butter  clams  and  mussels  analyzed p reviously  by  the  Alaska  Department  of  

Environmental  Conservation v ia  post-column o xidation.  Linear  regression  was  used t o c ompare  

results  using  pre- and p ost-column o xidation m ethods  (y  =  0.94x-6.04,  r2 =  0.985).  Daily  quality  

assurance  was  performed  by  analyzing  toxin s tandards  pre- and p ost-analysis.  In e ach  case  

instrument  response  was  within 9 7%  of  original  standard c urve  results.  Positive  controls  were  

also i ncluded d uring  each r un.  

 

2.4 D ata a nalysis  

 Interannual  and s easonal  trends  in to tal  toxin  levels  for  2013-2020 s amples  collected  

from O uzinkie,  Kodiak a nd O ld H arbor  were  analyzed  graphically  using  SigmaPlot  14.0  

software  (Systat  Software,  Inc.,  San J ose,  California,  USA).  Comparisons  of  toxin c oncentrations  

and %   toxin c ontent  in b utter  clams  among  sites  were  performed u sing K ruskal-Wallis  one-way  

analyses  of  variance  on r anks,  as  the  data  were  highly  variable  and d id n ot  meet  the  assumptions  

of  a  parametric  ANOVA.  Seasonal  trends  were  examined b y  binning  toxin le vels  by m onth a nd  

calculating  the  mean  and  standard d eviation.  The  contribution o f  major  toxin c ongeners  (STX,  

neoSTX,  total  GTXs  [i.e.,  GTX2/3 +   GTX1/4 +   GTX5])  to b utter  clam t oxin l evels  was  

determined a s  the  STX  equivalents  for  each c ongener  relative  to t he  total  toxin l evel  (%).  This  

approach p rovided a   measure  of  relative  importance  of  STX,  neoSTX  and t he  GTXs  (2/3 a nd  

1/4)  to t he  total  clam  toxicity  in S TX  equivalents.  Congeners  having  very  low  toxicity  (e.g.,  

C1/C2)  were  present  in v ery  low  quantities  and c ontributed l ittle  to t he  total  toxicity  in S TX  

equivalents.  Similarly,  congeners  that  could n ot  be  quantified ( e.g.,  GTX6)  were  not  considered  

in t he  analysis.  
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 To b etter  understand h ow  toxins  were  distributed a mong  butter  clam  tissues  and h ow  

distribution o f  these  compounds  changed o ver  time,  variation i n t oxin le vels  among  the  tip,  neck,  

gut  and b ody  tissues  was  examined a s  both to xin c oncentrations  (µg  STX  Eq.  100  g-1)  in e ach  

tissue  component  and a s  %  toxin c ontent  relative  to t otal  toxin c ontent  in t he  whole  clam.  The  

contribution o f  dominant  toxin c ongeners  (STX,  neoSTX,  total  GTXs)  in e ach t ype  of  clam  

tissue  was  calculated u sing  the  concentration o f  each c ongener  relative  to t he  total  toxins  in t hat  

tissue  component  (%).  

 

3.  Results  

3.1 T otal  Toxin c oncentrations  in b utter  clams  

 Total  toxin c oncentrations  in b utter  clams  from  the  three  Kodiak  monitoring  sites  show  a  

pattern o f  increasing  levels  in s ummer  and d ecreasing  levels  in w inter.  Distinct  peaks  in to tal  

toxin  levels  were  evident  at  all  three  sites  in  May-August,  consistent  with t he  annual  occurrence  

of  Alexandrium  blooms  (Fig.  2).  Following  the  bloom  period,  toxin c oncentrations  typically  

declined,  reaching m inimum  levels  in t he  winter  months  (December- February).  

 At  Ouzinkie,  total  toxin l evels  ranged f rom  46-578 µ g  STX  Eq.  100  g-1  among  the  71  

samples  collected,  averaging  165±87 µ g  STX  Eq.  100  g-1  (Fig.  2A).  Though t oxin c oncentrations  

subsequently  declined in   the  fall  and w inter,  they  remained a bove  the  FDA  regulatory  limit  of  80  

µg  STX  Eq.  100  g-1  after  January  2014 e xcept  for  samples  collected in J  une  and S eptember  of  

2015 ( 62.3,  61.8 µ g  STX  Eq.  100  g-1 ,  respectively).  

 In  comparison,  data  from N ear  Island,  Kodiak  showed t oxin l evels  ranged f rom 1 6 µ g  

STX  Eq.  100  g-1  in M ay  2018 to 3  85 µ g  STX  Eq.  100  g-1  in J une  2018 ( Fig.2B).  In  contrast  to  

Ouzinkie,  total  toxin c oncentrations  in  Kodiak  were  generally  low  through  the  entire  study  

period w ith a   few  periods  when c oncentrations  exceeded 8 0 µ g  STX  Eq.  100  g-1 ,  including  April,  
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244 August  and  December  of  2017,  June-July  of  2018,  and  May-June  of  2019.  It  is  worth n oting  that  

both th e  minimum a nd  maximum t oxin c oncentrations  observed a t  Near  Island ( 16 a nd 3 85 µ g  

STX  Eq.  100  g-1)  occurred b etween  May  and J une  of  the  same  year.  The  reason f or  this  rapid  

increase  in b utter  clam  toxin c oncentrations  is  not  known,  but  is  consistent  with t he  ephemeral  

nature  of  the  early  summer  Alexandrium  blooms  in K odiak ( May-June;  Matweyou,  2003).  The  

peak  toxin c oncentration  was  followed b y  a  rapid  decline  to 1 29 µ g  STX  Eq.  100  g-1  in J uly  

followed b y  relatively  low  levels  for  the  remainder  of  the  winter  season ( 36-70 µ g  STX  Eq.  100  

g-1 ,  Fig.  2B).  

 At  Old H arbor,  butter  clam  toxin c oncentrations  ranged b etween a   high o f  672 µ g  STX  

Eq.  100  g-1  in J une  2016  and a   low  of  41 µ g  STX  Eq.  100  g-1  and i n J anuary  2020 ( Fig.  2C).  

Despite  occasional  gaps  in d ata  collection,  distinct  peaks  in t oxin c oncentrations  were  evident  at  

Old H arbor  in s ummer  of  2014 ( 340-421 µ g  STX  Eq.  100  g-1),  2015 ( 399 µ g S TX  Eq.  100  g-1),  

2016 ( 672 µ g  STX  Eq.  100  g-1),  2017 ( 276 µ g  STX  Eq.  100  g-1)  and 2 018  (273-276 µ g  STX  Eq.  

100  g-1 ,  Fig.  2C).  In  contrast,  it  seems  the  summer  of  2019 w as  characterized b y  an  early,  more  

moderate  bloom  in M arch-May  (142-167 µ g S TX  Eq.  100  g-1)  followed b y  lower  butter  clam  

toxin  levels  <  80 µ g  STX  Eq.  100  g-1  through th e  following  summer  and u ntil  the  end o f  the  

study  in  February  2020.  

 

3.2 S easonal  toxin v ariation a nd m ajor  STX  congeners  

 When t he  concentrations  of  major  toxin c ongeners  in b utter  clams  were  expressed a s  a  

percentage  of  the  total  toxin p ool,  STX  was  the  most  important  congener  overall,  with a   lesser  

contribution b y  neoSTX  and a   marked i ncrease  in  the  GTXs  during t he  summer  months  (Fig.  3).  

Over  the  2013-2020 s tudy  period,  saxitoxin a ccounted f or  an  average  of  67±17%  of  the  total  

toxin c oncentrations  at  Ouzinkie,  71±16%  at  Kodiak a nd 5 9±18%  at  Old H arbor  (Fig.  3B).  In  
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268 contrast,  neoSTX  accounted f or  only  18±13%,  13±12%  and 1 2±10%  of  the  total  concentrations  

at  the  three  sites,  respectively  (Figs.  3C).  

 On a   seasonal  basis,  the  contribution o f  STX  to t otal  toxin l evels  generally  remained  

above  50%  at  all  sites  during  most  of  the  year,  but  declined d uring th e  summer  Alexandrium  

bloom,  when G TXs  contributed a   greater  portion o f  toxin le vels  (Fig.  3B,  D).  This  pattern w as  

paralleled b y a   decline  in  the  average  contribution o f  neoSTX,  which r epresented  ~15-25%  of  

toxin  levels  during  late  summer  through s pring  months,  but  declined t o < 15%  during  the  

Alexandrium  bloom  in  May-July  (Fig.  3C).  The  relative  importance  of  the  GTXs  to c lam to xin  

levels  was  evident  by  the  increasing  contribution  of  these  congeners  during  the  spring-summer  

bloom ( Fig.  3D).  Seasonality  of  GTXs  was  most  pronounced i n O ld H arbor  clams,  where  GTXs  

represented 1 2-16%  of  clam  toxicity  during  the  winter  months  (Nov-Feb),  27-41%  in M arch-

May,  and  ~60%  of  clam t oxicity  in J une  (Fig.  3D).  

 Averaged o ver  the  year,  GTXs  contributed to 1  5±18%  of  the  clam to xin le vels  at  

Ouzinkie,  15±17%  at  Kodiak a nd 2 8±21%  at  Old  Harbor.  The  results  of  a  non-parametric  

ANOVA  indicated t he  contribution o f  STX  to c lam to xicity  was  significantly  lower  (H  =  10.1,  

p<0.05)  and G TX  significantly  higher  (H  =  19.3,  p<0.05)  at  Old H arbor  compared t o c lams  from  

the  other  two s ites.  

 

3.3 D istribution o f  PSTs  in c lam  tissues  

 Dissection o f  butter  clam t issues  enabled a nalysis  of  toxin d istribution p atterns  relevant  to  

preparation m ethods  used b y  Kodiak  subsistence  harvesters  (Fig.  4).  Overall,  the  distribution o f  

PSTs  among  butter  clam ti ssues  was  highly  variable  among  sampling  sites  and d ifferent  times  of  

year  although to tal  PST  concentrations  generally  followed th e  same  seasonal  trend ( i.e.,  Fig.  3).  

When a ll  groups  of  samples  from b oth l ocations  were  pooled,  the  toxin c oncentrations  within th e  
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292 butter  clam g ut  were  higher  on a verage  than a ll  other  tissues  (mean 5 79±760 µ g  STX  Eq.  100  g-

1).  Average  toxin c oncentrations  in t he  siphon t ip a veraged 3 05±152 µ g S TX  Eq.  100  g-1 ,  those  

in t he  neck  were  194±182 µ g  STX  Eq.  100  g-1 ,  and t hose  in t he  body  averaged 1 57±205 µ g S TX  

Eq.  100  g-1  (Fig.  5A).  In  contrast,  when t oxin le vels  in e ach  tissue  were  expressed a s  percentages  

of  the  toxin p ool  present  in t he  whole  clam,  the  highest  average  toxin a mounts  were  found in t  he  

body  (42%),  followed b y  the  neck  (26%),  the  gut  (21%)  and th e  siphon t ip ( 11%,  Fig.  5B).  The  

greater  %  toxin in th  e  clam  body  reflects  the  greater  relative  mass  of  this  tissue  component.  

 Seasonal  changes  in t oxin l evels  accounted f or  the  bulk  of  variation i n t oxin  

concentrations  among  tissue  types  and w as  driven  by  the  clams’  ingestion o f  Alexandrium  cells  

during  the  summer  bloom.  The  greatest  degree  of  toxin v ariation o ccurred  in th e  gut  10-2,492 µ g  

STX  Eq.  100  g-1  and t he  body  11-789 µ g S TX  Eq.  100  g-1 ,  with s maller  variation i n t he  neck  71-

1,184 µ g  STX  Eq.  100  g-1  and s iphon t ip 1 06-706  µg  STX  Eq.  100  g-1  (Fig.  5A,  Table  1).  This  

variability  was  largely a ttributable  to c hanges  in  Alexandrium  abundance  during y early  blooms.  

These  seasonal  changes  in t oxin  levels  among  clam tis sues  is  exemplified  by  samples  collected  

in M ay  2017  and J un 2 018 ( Figs.  6,  7).  On 2 5  May  2017,  the  highest  toxin c oncentrations  were  

observed i n t he  clam  siphon t ip ( 212-470 µ g  STX  Eq.  100  g-1)  and n eck  (81-368 µ g  STX  Eq.  100  

g-1),  which  accounted f or  18-29%  and 3 2-56%  (respectively)  of  the  total  clam  toxin p ool  (Fig.  6,  

Table  1).  Toxin c oncentrations  were  much lo wer  in th e  gut  (10-19 µ g  STX  Eq.  100  g-1),  

representing  only  3-4%  of  the  total  toxin p ool.  Toxins  in t he  body  of  the  clams  ranged b etween  

11 a nd 2 4 µ g  STX  Eq.  100  g-1  (17-35%  of  total).  

 In  contrast,  monitoring  samples  from t he  same  site  on 1 8 J une  2018 s howed a   much  

higher  toxin l evel  (273 µ g S TX  Eq.  100  g-1 ,  Figs.  2B,  Fig.  7).  Although  fewer  groups  of  clams  

were  collected i n J une  2018 ( n =   3),  tissue  data  showed h igh to xin c oncentrations  in t he  gut  
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315 (1,937-2,491 µ g  STX  Eq.  100  g-1),  representing  57-64%  of  the  total  toxin  pool  (Figs.  7A-C,  

Table  1).  On th e  same  day,  toxin l evels  in th e  siphon t ip a nd n eck  were  212-258 a nd 1 32-163 µ g  

STX  Eq.  100  g-1  (respectively),  representing  only  2-3%  and 5 -7%  (respectively)  of  the  total  toxin  

pool.  

 

3.4 S axitoxin c ongeners  in b utter  clam  tissues  

 The  distribution o f  the  dominant  saxitoxin c ongeners  (STX,  neoSTX,  GTXs),  and th eir  

relative  contribution to ti  ssue  toxin p ools  was  assessed i n  greater  detail  using  2016-2018 s amples  

collected a t  Mission B each,  Kodiak  (Fig.  8).  Here,  STX  and n eoSTX  were  the  dominant  

congeners  in th e  siphon t ip a nd n eck  (Figs.  8A-F).  STX  and n eoSTX  were  also p rominent  in th e  

clam g ut  and b ody,  but  GTXs  contributed a   much  greater  percentage  of  overall  clam  toxicity.  On  

average  GTXs  represented t he  bulk  of  the  toxin lo ad i n t he  clam g ut  in J une  2016 ( 82%,  Fig.  

8A),  June  2017 ( 54%,  Fig.  8C),  June  2018  (85%,  Fig.  8E)  and J uly  2018 ( 82%,  Fig.  8F),  

although  STX  was  prominent  on th e  other  two d ates  (May  2017,  Apr  2018,  Figs.  8B,  D).  The  

clam  body  was  marked b y  elevated G TX  percentages  in J une  2016  (53%)  and J un-Jul  2018 ( 75-

62%,  Figs  8A,  E,  F),  with p rominent  STX  levels  in M ay-Jun 2 017 a nd A pril  2018 ( Figs.  8B,  C,  

D).  

 

4.  Discussion  

 

4.1 P atterns  of  toxin le vels  in s hellfish  

 Butter  clams  are  the  most  common s hellfish s pecies  responsible  for  PSP  incidence  in  

Alaska.  A  20-year  retrospective  analysis  of  Alaskan P SP  cases  indicated b utter  clams  caused  

58%  of  PSP  incidences,  with t he  remainder  of  the  illnesses  involving  mussels  (22%  Mytilus  

14  
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339 spp.),  cockles  (13%  Clinocardium  spp.),  razor  clams  (2%  Siliqua p atula)  and li ttleneck  clams  

(2%  Leukoma s taminea;  Gessner  and M iddaugh,  1995).  A  more  recent  report  by  Castrodale  

(2015)  showed  a  similar  pattern,  where  butter  clams  caused 3 4%  of  70  PSP  incidents  (26%  of  

117 c ases).  Despite  their  predominance  in  PSP  outbreaks,  butter  clams  remain a   preferred  

shellfish s pecies  among N ative  residents  in t he  Kodiak  Archipelago.  This  preference  was  evident  

during  the  design o f  both t he  current  study  and t he  preceding  ADEC  pilot  study  (Matweyou a nd  

Bartz,  2015),  and  reflects  an e nduring K odiak  tradition o f  butter  clam  harvesting.  A  survey  of  

Kodiak A rchipelago r esidents  by  the  Alaska  Division o f  Public  Health i ndicated P SP  risk  was  12  

times  higher  among  long te rm K odiak  residents  (>20  years)  than  in t hose  emigrating  to  Kodiak  

more  recently  (Ralonde,  1996).  Furthermore,  PSP  risk  was  not  uniform  across  the  Islands.  

Residents  of  Old H arbor  were  three  times  more  likely  to r eport  symptoms  of  PSP  than t hose  in  

Kodiak.  This  pattern i s  supported b y  toxin d ata  from  the  current  study  as  well  (Fig.  2).  The  

apparent  difference  in P SP  incidence  among  the  two c ommunities  is  attributable  to h igher  butter  

clam  toxin c oncentrations  at  Old H arbor,  greater  access  to c ommercially  sourced f oods  in th e  

City  of  Kodiak  (restaurants,  grocery  stores),  more  frequent  exposure  to P SP  advisory  information  

in t he  more  urban l ocation,  and th e  greater  proportion o f  Native  residents  in  Old H arbor  relative  

to t he  city.  The  current  study  also  confirmed tr aditional  knowledge  that  butter  clams  are  less  

toxic  in w inter,  but  showed w inter  toxin l evels  often r emained  above  the  recommended s afety  

level  of  80 µ g  STX  Eq.  100  g-1  at  Ouzinkie  and O ld H arbor  (Figs.  2,  3).  This  validates  previous  

work  in A laska  confirming  that  harvesting  in w inter  months  does  not  guarantee  butter  clams  are  

safe  to e at  (Gessner  and  Middaugh,  1995;  Castrodale,  2015).  

 

4.2 E fficacy  of  removing  tissues  to r educe  butter  clam  toxin l evels  
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 The  results  of  this  study  indicate  removal  of  the  siphon t ip o r  other  tissues  from  butter  

clam m eats  during  preparation i s  not  an e ffective  approach f or  reducing  toxicity  to s afe  levels.  

This  finding  is  significant,  given t he  widespread b elief  among K odiak r esidents  that  it  is  possible  

to p repare  shellfish in s  uch a   way  that  PSP  could b e  prevented ( Ralonde,  1996;  this  study).  In t he  

current  study,  the  observed d istribution o f  toxins  among c lam tis sues  was  not  consistent,  and  the  

data  indicate  removal  of  specific  tissues,  such a s  the  siphon t ip,  is  often in sufficient  to r educe  the  

overall  toxin l oad to s  afe  levels  (Figs.  5-7,  Table  1).  For  instance,  in b utter  clams  collected f rom  

Kodiak a nd O ld H arbor,  the  siphon tip o  ften e xhibited t he  highest  concentration o f  toxins  (106-

706 µ g  STX  Eq.  100  g-1).  But  since  the  siphon t ip  represents  only  a  small  fraction o f  the  whole  

clam,  it  contained < 30%  on a verage  of  the  total  clam  toxin p ool  (Figs.  5B,  6,  7,  Table  1).  Given  

this  information,  removal  of  the  siphon ti p i s  not  adequate  to r educe  clam  toxin lo ads  to s afe  

levels,  especially  at  sites  like  Ouzinkie  and O ld H arbor  where  toxin c oncentrations  are  often  

several  times  the  regulatory  limit  (Fig.  2A,  C).  Although t oxin le vels  were  generally  lower  at  

Kodiak  sites  (Fig.  2B),  the  efficacy  of  siphon t ip r emoval  in r educing  toxin l evels  was  still  highly  

variable,  yielding  a  reduction in c  lam to xin l evels  of  18-29%  in  May  2017,  but  only  2-3 %   in  

June  of  2018 ( Figs.  6  & 7 ,  Table  1).  These  data  underscore  the  risks  to h arvesters  in t he  Kodiak  

Archipelago  and e lsewhere  in A laska  who  consume  untested s hellfish.  

 The  data  from  this  study  mirror  those  reported in e  arly  efforts  to m easure  toxin le vels  in  

Alaskan b utter  clams  more  than 6 0  years  ago.  These  early  efforts  used m ouse  bioassays  and  

focused o n e nvironmental  factors  governing  shellfish to xicity,  identification o f  sites  with h igh  

and l ow  toxin le vels,  development  of  screening  capacity  and  methods  for  reducing  butter  clam  

toxicity  (Chambers  and  Magnusson,  1950;  Chambers  et  al.,  1955;  Magnusson e t  al.,  1955;  

Waskiewiez  et  al.,  1955;  Page  and  Meyers,  1957).  Data  from a   retrospective  by  Brown  (1960)  
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385 indicated t he  siphon o f  butter  clams  collected  at  sites  in s outheast  Alaska  during  1946-1960  

exhibited t oxin c oncentrations  between t wo a nd 1 3-fold h igher  than t hose  in  the  clam  bodies.  On  

average,  siphons  contained 5 ,886 m ouse  units  (MU)  STX  Eq.  100  g-1  (~1,177 µ g  STX  Eq.  100  g-

1)  versus  869 M U  STX  Eq.  100g-1  (~174 µ g  STX  Eq.  100  g-1)  in t he  clam  bodies  (0.2 µ g  STX  

Eq.  MU-1 ,  Wekell  et  al.,  2004).  More  detailed f ollow-up w ork  showed 2 4%  of  butter  clam  toxins  

were  associated w ith th e  black  tip o f  the  siphon a nd 5 4%  with th e  neck  (middle+inner  siphon),  

with th e  remaining  22%  distributed a mong  the  various  organs  (Quayle,  1967;  Quayle  and  

Bourne,  1972).  

 Given th e  similarity  between th e  current  results  (siphon ti p 2 -30%,  neck  3-56%  of  the  

butter  clam  toxin le vels,  Table  1)  and t hose  from p revious  studies  about  the  relative  

ineffectiveness  of  siphon  removal,  it  is  reasonable  to q uestion t he  need t o r evisit  the  same  issue.  

In th is  study,  HPLC  was  used t o t rack  distribution  of  STX,  neoSTX  and G TX  among c lam  

tissues  (Figs.  5-8),  an  analytical  method th at  was  unavailable  to e arlier  researchers.  These  

congener  distribution d ata  are  highly  relevant  to s hellfish s afety  in A laska  as  exemplified b y  the  

recent  PSP-related d eath  that  occurred i n s outhwest  Alaska  in J uly  2020 ( ADHSS,  2020).  A  

sample  collected f rom U nalaska  showed  STX  and  neoSTX  concentrations  of  313 a nd 4 72  µg  

100  g-1  (respectively),  while  the  concentration o f  GTXs  was  nearly  9,800  µg  100  g-1  (pers.  

comm.,  Alaska  DEC  Environmental  Health  Laboratory).  The  elevated  GTX  levels  in t he  

Unalaska  shellfish a re  indicative  of  Alexandrium  blooms  very  similar  to t hose  in K odiak  during  

the  current  study.  Taken  together,  the  congener  data  from K odiak  and  Unalaska  exemplify  the  

importance  of  quantifying  GTXs  in a ddition t o S TX.  In p articular,  this  is  a  vital  concern  for  PSP  

field t est  kits  used f or  screening  Alaskan s hellfish.  To d ate,  available  field t ests  have  been  

designed  primarily  to d etect  STX,  which is   the  most  toxic  of  the  PST  congeners  (McCall  et  al.,  
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408 2019).  The  data  from  Kodiak  indicate  quantification o f  GTXs  may  be  just  as  relevant  to P SP  risk  

in A laskan s hellfish ti ssue.  

 

4.3 S easonal  differences  in to xin d istribution a mong ti ssues  

 The  distribution o f  PSTs  in c lam t issues  varies  through t he  bloom  season.  When  

saxitoxin-producing  dinoflagellate  cells  are  present,  toxins  are  generally  apparent  first  in t he  

bivalve  digestive  gland a nd s tomach  as  the  cells  are  ingested ( Bricelj  and S humway,  1998).  

Toxins  are  then tr ansferred s equentially  to t he  digestive  and e xcretory  organs  before  reaching  the  

muscular  tissues  such a s  the  siphon,  foot  and a dductor  muscles  (Cembella  et  al.,  1993;  Kwong e t  

al.,  2006;  Medina-Elizalde  et  al.,  2018).  A  similar  progression o ccurs  in b utter  clams,  where  

previous  data  showed t oxin l evels  increase  rapidly  in th e  visceral  mass  (digestive  organs)  over  

several  days,  followed b y  a  more  gradual  increase  in s iphon t oxin l evels  over  several  weeks  

(Beitler,  1988).  The  clam t issue  data  collected in   Kodiak a nd O ld H arbor  in th is  study  indicate  a  

similar  pattern.  In s amples  from K odiak,  the  fraction o f  toxin in   the  gut  averaged o nly  5%  during  

April  2018,  increased t o 6 0%  during  the  Alexandrium  bloom in J  une,  and t hen d eclined to 2  7%  

as  the  bloom s ubsided in   July  (Table  1).  During  the  same  period,  toxins  in  the  siphon r epresented  

55%  of  the  total  toxin p ool  in A pril,  declined t o o nly  9%  in J une,  and t hen  increased t o 2 3%  in  

July  as  the  bloom s ubsided.  

 Given th is  seasonal  pattern o f  toxin d istribution in   the  gut  relative  to t he  siphon,  the  

relative  effectiveness  of  removing  these  tissues  depends  on t he  time  of  year  when c lams  are  

harvested  and w hich t issues  are  removed.  For  example,  this  study  indicates  removal  of  the  gut  

contents  might  have  little  effect  on o verall  toxin  levels  when  Alexandrium  cells  are  sparse  during  

March,  but  might  substantially  reduce  toxin le vels  during  peak  bloom  levels  in J une.  Conversely,  

elimination o f  the  clam s iphon d uring  June  would r educe  toxin l evels  by  <10%  compared to   
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432 other  times  of  the  year.  Because  no b utter  clam  data  were  available  from  the  winter  months,  it  

was  not  possible  to a ssess  potential  reduction i n t oxin l evels  during  that  season.  

 It  is  noteworthy  that  data  from  this  study  and f rom  Beitler  (1988)  each i ndicate  the  shift  

in t he  bulk  of  clam  toxins  from  the  gut  to t he  siphon m ay  occur  very  quickly  as  a  bloom  

develops.  Butter  clam m onitoring  data  from  Kodiak  showed c lams  were  devoid o f  GTXs  on 0 8  

April  2018,  for  instance,  but  these  toxins  were  detected i n th e  clam g ut  just  nine  days  later  (17  

April,  congener  data  not  shown).  This  pattern o f  rapid to xin a ccumulation w as  mirrored in   

laboratory  data  where  GTXs  accumulated i n th e  butter  clam g ut  within a   few  days  after  exposure  

to  Alexandrium  cells  (Beitler,  1988).  Such  rapid t oxin a ccumulation p oses  a  danger  to s hellfish  

harvesters  given t he  apparent  shift  in b loom ti ming  expected d uring  regional  warming  events  in  

Alaska.  If  higher  water  temperatures  prompt  an  Alexandrium  bloom  in  March-April  instead o f  

June-July,  for  instance,  the  degree  of  PSP  risk  is  likely  to s hift  as  well.  Earlier  spring  blooms  due  

to t he  widening  thermal  window  for  Alexandrium  growth h ave  been id entified e lsewhere  in  

Alaska  (Gobler  et  al.,  2017;  Vandersea  et  al.,  2018).  Shifts  in th e  timing  of  Alexandrium  blooms  

and e nsuing  changes  in s hellfish to xin  levels  in K odiak m ay  have  serious  consequences  for  butter  

clam  harvesters  seeking  to le ssen t oxin le vels  by  removing  the  siphon o r  other  tissues.  

 

5.  Conclusions  

 With e xposure  to s ome  of  the  highest  levels  of  PSTs  in th e  state  and s trong c ultural  

dependence  on b utter  clam r esources,  residents  of  the  Kodiak  Archipelago  are  particularly  

vulnerable  to P SP  risks.  This  study  was  designed  in d irect  response  to i nquiries  from  the  

subsistence  harvesters  in  Ouzinkie,  Kodiak  and  Old H arbor  to h elp  address  these  risks  by  

application o f  community-based b utter  clam  monitoring.  Such  monitoring  was  intended to b  etter  

define  seasonality  of  butter  clam to xin l evels,  to  examine  differences  among  traditional  
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456 harvesting  beaches,  and t o te st  the  efficacy  of  traditional  preparation  methods  in r educing  toxin  

exposure.  Monitoring  data  collected in 2  013-2020  indicated b utter  clam to xin le vels  were  2 t o  

2.5-fold h igher  on a verage  in O uzinkie  and O ld H arbor  than  at  collection s ites  in K odiak.  While  

STX  was  the  predominant  toxin i n b utter  clams,  seasonal  patterns  indicated  the  congener  GTX  

accounted  for  27-55%  of  toxins  during  the  spring  and s ummer,  but  only  3-8%  before  the  summer  

Alexandrium  bloom.  Toxin d istribution i n c lam  tissues  showed w ide  variability  among  the  

siphon ti p ( 2-29%  of  total),  the  neck  (3-56%),  the  gut  (3-65%)  and t he  body  (6-85%).  As  a  result,  

preparation m ethods  such a s  removal  of  the  siphon ti p o r  gut  contents  could r educe  clam  toxin  

levels  substantially  in s ome  instances  but  have  little  effect  in o thers.  Taken  together,  these  data  

indicate  tissue  removal  is  not  a  reliable  strategy  for  reducing P SP  risk  in b utter  clams.  
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688 Figure  Captions  

 

Fig.  1.  Study  sites  in  the  Kodiak  Archipelago,  Alaska.   A.  Regional  map  of  southwest  Alaska  

showing  location o f  Kodiak  Islands  off  the  Alaska  Peninsula.   B.  Enlargement  of  the  City  of  

Kodiak  with  Butter  clam  collection  sites  (red d ots):  Near  Island ( NI)  and  Mission  Beach  (MB).   

C.  Enlargement  of  Ouzinkie  with  collection  site  at  Sourdough  Flats  (SF).   D.  Enlargement  of  

Old  Harbor  with  collection s ite  at  Shipwreck  Beach  (SB).  

 

Fig.  2.  2013-2020  butter  clam  toxin  concentrations  at  A.  Sourdough F lats,  Ouzinkie,  B.  Trident  

Basin  (bars)  &  Mission  Beach ( dots),  Kodiak,  and  C.  Shipwreck  Beach,  Old  Harbor.  The  red  

dashed  line  denotes  the  action  limit  for  saxitoxins  in  shellfish  established  by  the  U.S.  Food a nd  

Drug  Administration ( 80  µg  STX  Eq.  100  g-1).  

 

Fig.  3.  Average  2013-2020 b utter  clam  toxin  levels  (µg  STX  Eq.  100 g -1)  ±  Std D ev a nd  

contributions  from t oxin  congeners  in  butter  clams  from  Ouzinkie,  Kodiak  and O ld H arbor.   A.  

Total  toxin c oncentrations  (µg  STX  Eq.  100  g-1).  The  red  dashed  line  in  panel  A  denotes  the  

action  limit  for  saxitoxins  in  shellfish e stablished  by  the  U.S.  Food a nd D rug  Administration ( 80  

µg  STX  Eq.  100  g-1).   B.  Percentage  of  total  toxin  level  due  to  saxitoxin  (STX),   C.  Percent  due  

to  neosaxitoxin  (neoSTX),   D.  Percent  due  to  gonyautoxins  (GTX2/3,  1/4  and 5 ).   

 

Fig.  4.  Butter  clam  tissues  for  this  study.   A.  Diagram  of  butter  clam  anatomy  from  Quayle  and  

Bourne  (1972)  showing  location o f  the  major  tissues:  Siphon T ip,  Neck,  Body  and G ut  

(digestive  gland,  stomach,  gonads,  style  and  intestine).   B.  Example  of  butter  clam  meats  

prepared f or  dissection  with  higher  magnification  inset  showing  the  prominent  siphon  and b lack  

tip.  Panel  A  from  Quayle  and  Bourne  (1972)  re-printed  courtesy  of  Canadian S cience  
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713 Publishing  (https://www.nrcresearchpress.com/page/authors/services/reprints).  Panel  B  by  J.  

Matweyou.  

 

Fig.  5.  Box p lots  of  PST  levels  in  butter  clam t issues  from  the  Kodiak  Islands  during  2015-2018.  

Data  from c lam t issue  components:  the  black  tip o f  the  siphon ( Tip),  the  remainder  of  the  siphon  

(Neck),  the  gut  contents  (Gut),  and  the  remaining  tissue  (Body).   A.  Toxin  concentrations  (μg  

STX  Eq.  100 g -1)  in  clam  tissue  components.  B.  %  of  total  toxin p ool  in  each c omponent.  Box  

plot:  solid  line  denotes  the  median,  dotted  line  indicates  the  mean,  box b ounds  represent  the  

25th -  75th  percentiles,  error  bars  denote  the  10th  - 90th  percentiles,  and  dots  represent  outliers.  

 

Fig.  6.  PST  distribution i n t issues  of  six  groups  of  butter  clams  (panels  A-F,  n  ≥12 c lams  per  

group)  collected  at  Mission  Beach,  Kodiak  on 2 5  May  2017.  Bars  illustrate  toxin c oncentrations  

(µg  STX  Eq.  100  g-1)  of  four  clam  tissues:  the  black  tip o f  the  siphon  (Tip),  the  remainder  of  the  

siphon ( Neck),  the  gut  contents  (Gut),  and  the  remaining  tissue  (Body).  Pies  represent  the  

proportion  of  toxins  (weight  %)  associated w ith e ach t issue.  Tissue  mass  data  were  not  available  

to c alculate  %  toxin  data  in  panel  D.  

 

Fig.  7.  PST  distribution i n t issues  of  three  groups  of  butter  clams  (panels  A-C,  n  ≥12 c lams  per  

group)  collected  at  Mission  Beach,  Kodiak  on 1 8  June  2018.  Bars  illustrate  toxin c oncentrations  

(µg  STX  Eq.  100  g-1)  of  four  clam  tissues:  the  black  tip o f  the  siphon  (Tip),  the  remainder  of  the  

siphon ( Neck),  the  gut  contents  (Gut),  and  the  remaining  tissue  (Body).  Pies  represent  the  

proportion  of  clam  toxins  (weight  %)  associated  with e ach  tissue.  

 

Fig.  8.  Contribution  of  saxitoxin c ongeners  (%  total  toxin  in e ach  tissue)  within b utter  clam  tissue  

components  collected  at  Mission  Beach,  Kodiak  in 2 016-2018.  Tissues:  the  black  tip  of  the  
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738 siphon ( Tip),  the  remainder  of  the  siphon ( Neck),  the  gut  contents  (Gut),  and th e  remaining  

tissue  (Body).  Bars  represent  mean  percentages  of  saxitoxin  (STX,  black  bars),  neosaxitoxin  

(neoSTX,  blue  bars)  and  total  gonyautoxins  (GTXs,  white  bars)  among  3-6  groups  of  butter  

clams  (n  ≥12 p er  group)  collected  on  each  date.  
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 Date Location   Replicate   Tip (%)   Neck (%)  Gut (%)   Body (%)  

   15 Jun 2015 

 

 Shipwreck Beach  

 

1  

2  

8.4  

4.1  

 20.0 

3.4  

 65.2 

7.2  

6.4  

 85.3 

  3  1.7  4.4   35.3  58.6 

  4   12.3  22.5  24.6  40.6 

 

 

 

 

5  

6  

 n/a 

 n/a 

 n/a 

 n/a 

 n/a 

 n/a 

 n/a 

 n/a 

       

   09 Jun 2016  Mission Beach  1  1.7   27.2  22.5  48.5 

  2  6.7  9.8   34.2  49.3 

  3  6.1  5.4   27.8  60.8 

  4  2.7  3.6   26.1  67.6 

  5   12.2 4.0   37.4  46.4 

       

   25 May 2017 

 

 Mission Beach  

 

1  

2  

 18.3 

 29.3 

 55.9 

 32.3 

2.5  

3.6  

 23.2 

 34.8 

  3   25.5  48.0 2.6   23.9 

 

 

 

 

4  

5  

 n/a 

 21.9 

 n/a 

 49.3 

 n/a 

3.8  

 n/a 

 24.9 

  6   24.1  55.7 3.4   16.8 

       

   22 Jun 2017  Mission Beach  1   11.7  38.5  12.5  37.3 

  2   10.4  37.2  12.4  40.0 

  3   13.0  27.2  12.8  47.0 

  4   16.6  35.2  10.1  38.1 

  5   13.4  44.7 6.6   35.3 

  6   14.3  42.3  12.3  31.1 

       

   17 Apr 2018 

 

 Mission Beach  

 

1  

2  

 10.6 

 21.8 

 35.8 

 47.7 

8.7  

3.5  

 44.9 

 27.0 

  3   11.0  43.3 3.3   42.4 

  4   12.9  38.0 3.3   45.8 

       

   19 Apr 2018 

 

 Shipwreck Beach  

 

1  

2  

 13.0 

 14.9 

 19.1 

 20.5 

 15.5 

 14.4 

 52.4 

 50.1 

  3   10.9  19.9  13.4  55.8 

       

   18 Jun 2018  Mission Beach  1  2.2  7.2   59.3  31.3 

  2  2.9  6.9   57.0  32.9 

  3  2.3  5.3   64.2  28.2 

       

   07 Jul 2018  Mission Beach  1  5.9   18.6  25.2  50.3 

  2  5.4   13.4  28.0  52.0 

  3  6.4   18.0  28.9  46.7 

  746 

743 Table  1.  Percentage  of  total  toxin  (STX  Eq.)  associated  with  four  tissues,  the b lack  tip  of  the s iphon  (Tip),  the  

remainder  of  the s iphon  (Neck),  the  gut  contents  (Gut),  and  the r emaining  tissue ( Body).  “n/a” d enotes  samples  

where t he t issue  sample  or  the w eight  was  not  available.  
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